
A0 A035 43 14 CALIFORNIA UNIV BERKELEY OPERATIONS RESEARCH CENTER FIG 5/1
p OPTIMAL DESIGN OF A MANPOW~ R SYSTEM.(U)

~JAN 77 R C GRINOLD N000114 75 C 0619
UNCLASSIFIED ORC—7 7—1 NL 

na______
______ END

DATE
it_ MED

_____ _____ 
3-7 - 7

I

II



L M2.8 112.5I. u L “~~~
_____ 

L ~~~ 11112.2
______ L 13.6

U—

I.’ ~L ‘~‘~
IIO~~11111 1.25 lIHI~

4 IIIIf~
.6



~~~~ OR~771,/y 9ANUARY 977
‘

~~~~~~~ 
I
f 

~~~~~~~~~

OPTIMAL DESIGN OF A MANPOWER SYSTEM

by
RICHARD C. GRINOLD

II
~~ uI 

.

0 4 ’

H
1

•

H
~ %

OPERATIONS
RESEARCH

CENTER

U N I V E R S I T Y  OF CALIFORNI A • BERKE LEY



—~~~~~~~~~~~ ——---- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~—- --~

OPTIMAL DESIGN OF A MANPOWE R SYSTEM

by

Richard C. Grinold
Business Administration

University of California, Berkeley

JANUARY 1977 ORC 77—1

This report was prepared under the Navy All Volunteer Force Manpower

R&D Program of the Office of Naval Research under Contract

N00014—75 C O619 with the University of California. Reproduction in

whole or in part is permitted for any purpose of the United States

Government.



Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (W~i.n D~ Sa EnI.r.d) 

__________________________________

__________________________________________________ 
BEFORE_COMPLETING_FORM

F flT A 12. GOVT ACCESSION NO. 3. RECIPIENT’S CATALOG NUMBER~~~~~ 
R EPORT DOCUMENTAT iON PAGE READ IN STRUCTIONS

~RC.a~77_i J ___________________________
4. T ITLE (wd Subf gtI. ) 

~~ J~
, 

~~~~~ ur ~~~~~~~~~~~~ ERED

OPTIMAL DESIGN OF A MANPOWER SYSTEM~~_/ 
Research,,R

~
;
~~~

i
~~

’

~I

7. AUTI4OR(a) S. CONTRACT OR GRANT NUMBER(a)

~~~ ichard C./rinold4 ~ Nd~~ l4 7s c-,~~~~J

6- PERFORMING ORGANIZATION NAM E AND ADDRESS 10. PROGRAM ELEMENT, PROJECT , TASK

Operations Research Center AREA I WORK UNIT NUMBERS

University of California NR 047 120
Berkeley, California 94720

II . CONTROLLING OFFICE NAME AND ADDRESS 12 ~~~~~~ ~~~~ ~~~—1
Office of Naval Research Jan~~~~ P77 /
Department of the Navy ~~ NUM BER OF

Arlington, Virginia 22217 23
II. MONITORING AGENCY NAME & AODRESS(t f dlfft,wt I ~ “

~
—

~~ 
IS. SECURITY C1 ASS. (of th i. riport )c~~ 

Unclassified

15.. DECLASSIFICATION/DOWNGRADING
_______________ SCHEDULE

IS. DISTRIBUTI ON STATEMEN T (of thu R.port)

Approved for public release; distribution unlimited.

I?. DISTRIBUTION STATEMENT (of II,. .bat,.ct .nt.,. d In Block 20. If dlfi.r.nt free, Ripen )

IS. SUPPLEMENTARY NOTES

IS. KEY WORDS (Cantlnu. on r.v ra. aid. ii n•c•.. y a~d Id.ntIly by block n.eeb.r)

Manpower Planning
Generalized Linear Programs
Shortest Paths
Column Generation
Bounds on Objective Functions

20. ABST RACT (Cenunu. en r.v~~s. .td. If n.c... 7 end IdenIII~ b~. blocS menb.,)

(SEE ABSTRACT) 
~~~ ~~

FORM aDO I JAN 73 473 EDITION OF I NOV 61 II OBSOL ETE
U n c l a s si f i e dS/N O1O2. LF- D~4. 66O~ —

~~~~~~~~~~~~~SECURITY C L A S S I F I CA T IO N  o r ~~~~ PAG F (~~
, flat.

_ _ _  ~2fl ~7~C
~~~~
I___ 

-
~~~~~~~~~~:~~~~~~~~~ -- _ - -~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ - . —.-— . T ± L1L —

~~~~~~~~~~



ABSTRACT

An equilibrium model of a manpower system is
developed based on the notion of a career flow.
Institutional constraints and measures of system
performance are linear functions of the career
flow. A typical optimal design problem is forum—
lated and a solution procedure is developed. The
optimization problem is a generalized linear pro-
gram in which columns are generated by solving a
shortest path problem. Upper and lower bounds on
the optimal value function can be developed at
each stage of the calculations.
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OPTIMAL DESIGN OF A MANPOWER SYSTEM

0. INTRODUCTION

This paper presents a model for the design of a manpower system and

develops a procedure for its solution. The manpower system is assumed to

be in temporal equilibrium and to be a strict hierarchy; i.e., a person

in rank i either stays in rank i , moves to rank i + 1 , or leaves the

system. The equilibrium assumption is critical to the model. The assump-

tion of strict hierarchy is made for simplicity; a more complicated system

could be considered in the same way with more complicated results.

The approach to modeling the manpower system was suggested by the equil—

ibriuin chain—flow model of Oliver and Hopkins [7]. Their idea of chain flow

is exactly the notion of career flow used in this paper. Oliver and Hopkins

stipulate a set of possible student and faculty flow paths through a univer-

sity and then calculate the path flows that are consistent with meeting in—

stitution.al constraints at minimum cost. This paper presents these ideas in

a more general setting and shows how the problem of having a very large num-

ber of possible career paths can be handled.

The motivation for the procedure developed in this paper can be found

in Schmidt, et al. [8], [9]. The problem posed in [8] and [9] is to design

a m anpower system in order to maximize the effectiveness to cost ratio sub-

ject to several institutional constraints. A rather complicated nonlinear

optimization approach that deals with an aggregate version of the problem

is presented in [8]. In contrast the approach described here is flexible,

general, deals with the entire problem, and is easily solved.

The problem of system design should be contrasted with the problem of

system control. In [4], [5], procedures for controlling graded manpower

systems were developed. These procedures assumed that certain ratios among

_



- -

2

manpower stocks and flows were known, stationary, and governed thD manpower

flow process. In contrast, the approach developed in this paper actually

designs the flow process and yields the ratios as policy variables.

Section I describes the manpower system and the equilibrium flow equa—

tions. The notion of a career is introduced in Section II and several im-

portant characteristics of the manpower system are expressed in terms of

career flows. In Section III linear programming optimization model is pre-

sented and Section IV describes a column generation technique for its solu-

tion; the columns are generated by solving a shortest path problem. In

Section V a termination criterion is developed. The special structure of

the problem allows one to determine if the current solution is within a

specified percentage error of the optimal solution. A subsequent paper will

deal with applications of the techniques developed here to the enlisted force

of the U.S. Navy.

1..
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I. THE SYSTEM

The manpower system is an N—rank hierarchy that is observed at equally

spaced points in time t — 0,1,2 The time interval (t — l,t] , after

time t — 1 and up to and including time t , is called period t . At ob-

servation time t each individual is given a classification (i,u) , accord-

ing to their r.nk, i , and period of service, u . A period of service

equal to u at time t indicates the individual entered the system in period

t + 1 — u : i.e. in the time interval (t — u,t + 1 — ul . An individual’s

length of service is the number of completed periods of service; thus an in-

dividual in class (i,u) has length of service u — 1 . The maximum length

of service is M — 1 ; thus an individual in class (i,M) must leave the

system.

Figure 1 shows the possible movements from class (i,u) . The individual

in (i,u) moves either out of the system (to class 0), stays in rank i , or,

if i < N , is promoted. There are no demotions or double promotions, and

each person enters in class (1,1)

0 leave system

i,u
i,u+l stay in rank I

i+l,u+l get promoted

FIGURE 1: Possible Transitions from Class (I ,u). 

. ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~.
_ -
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We assume the system is in equilibrium. Let s(i,u) be the number

of people in class (i ,u) , and let f(i,u,j) be the number of people per

period who move from class (i,u) to class (j,u + 1) . Notice the assump—

tion on possible movements implies f(i,u,j) = 0 if j is not equal to

0 , I , or i + 1 • Of course, f(N ,u,N + 1) — 0 , since there are only N

ranks, and f ( i,M,i) — f(i,M,i + 1) = 0 since one must leave the system

during the Mth period of service.

The equilibrium flow equations are

(2) (1) f or u = 1 , I = 1

s(l,l) = f (l,l,0) + f( l ,l,l) + f(l,l,2)

(ii) for 1 < u < M , i = l

f(l,u — 1,1) s(l ,u) = f(l,u,O) + f(1,u,l) + f(l,u,2)

(Iii) for 1 < u < M , 1< i < N

f(i — l,u — l,i) + f(i,u — l,i) = s(i,u) f(i,u,0) + f(i,u ,i)

+ f(i,u,u + 1)

(iv) for l < u < M , i = N

f (N — l,u — l,N) + f(N ,u — l,N) — s(N,u) a f(N ,u,0) + f(N,u,N)

(v) for u M , i i

f(l,M — 1,1) s(l,M) = f(1,M,0)

(vi) for u M , l < i

f(i — l,M — 1,1) + f(i,M — l,i) a s(i,M) — f(i,M,0)

The equilibrium flow for N — 3 , M = 5 is shown in Figure 2, retirement

flows (i,u,0) are not shown.

The variable s(I,u) and f(i,u,j) allow for a measure of the effec—

tiveness and cost of different equilibrium flow patterns. Let e(i,u) be

the effectiveness of an individual In class (i,u) , c(i,u) the cost,

p(i,u) the cost associated with a promotion from (i,u) to (i + l,u + 1) ,

--

~ 
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6

and r(i,u) the cost of a retirement from (i,u) . The cost and effective-

ness are respectively:

(3) (1) ~ ~ c(i,u)s(i,u) + p(i,u)f(i,u,i + 1) + r(i,u)f(i,u,O)
i u

(ii) ~ ~ e(i,u)s(i,u)
l u

Although EquatIons (2) and (3) describe the equilibrium conditions and

possible criteria they are not in a suitable form to describe the structure

of allowable flow patterns. That structure will be discussed In the next

section.
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II. CAREERS

A career is a path through the manpower system that commences at rank

1 with u — 1. . Let k index the career. Each career has several im-

portant characteristics. Some of these are:

(4) (1) n(i,k) The number of times counted in class I

(ii) m(i,k) Attainment of class i : this variable is one If career

k includes class I (I.e. if n(i,k) > 0), zero if

career k does not include class i i.e. n(i,k) = 0

(iii) a(i,k) Length of service upon entry to class I

(iv) d(v,k) — The number of periods with length of service greater than

v : i.e. time spent in the professional force.

(v) e(k) ‘— The total effectiveness of career k

(vi) c(k) The total cost of career k

(vii) n(k) Total length of career k , n(k) ~ (n(i,k)
i

A career may be characterized by transitions between nodes. Let

k 1 If career k moves from (I,u) to (j,u + 1)
f (i,u,j) =

0 otherwise .

The characteristics described in (4) can be expressed in terms of the

variables fk

(5) (i) n(i ,k) — ~ f k (j u j )
u j

(ii) m (i,k) ~~ f k (j — l,u,i) for I > 2

(iii) a(i,k) — ~~ uf
k(I — l,u,I) for i > 2

(iv)d(v ,k) ~ ~ f
k(i,uj)

u>v i j

_ _ _ _ _  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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(v) c (k) = ~ c(i,u,j)fk(i,u,j)
t i i j

(vi) e(k) = ~ e(i,u) ~ f
k(iuj)

u l  j

(vii) n(k) ~ ~ f
k(j u j)

i u j

The costs c(i,j,j) are calculated from basic costs described in Section I.

(6) (i) c(i,u,0) = c(I,u) + r(i,u)

(ii) c(i,u,i) = c(i,u)

(Iii) c(i,u,i + 1) c(i,u) + p(i,u)

The special structure of the organization implies that fk(i,u,I + 1) = 1

for at most one value of u . Thus at most one term In the summations (5:ii)

and (5:iii) is equal to one.

Let g(k) be the number of people starting career k each period.

Under the steady—state assumptions there will be g(k) individuals in each

phase of the career. It follows that:

(7) (1) ~ n(i,k)g(k) is the total number of people in class I
k

(ii) ~ m(I,k)g(k) is the number of entrants that ever reach class i
k

(iii) ~ a(i,k)g(k) is the total length of service of individuals
k

entering class I *

(iv) ~ d(v,k)g(k) is the number of people with length of service
k

greater than v

(v) ~ c(k)g(k) is the total cost incurred.
k

(vi) Y e(k)g(k) is the total effectiveness.
k

(vii) ~ n(e)g(k) is the total number of people in the system.
k

This description of the system is based on the notion of a career. The next

section demonstrates how the system can be designed in an optimal manner.

~ 

~ L. _ _ _ _ _ _ _  1T~~ —14
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III. THE OPTIMiZATION PROBLEM

The model can be used with several objectives. It is possible to maxi-

mize effectiveness subject to a cost constraint. An alternative is to mini-

mize cost subject to an effectiveness constraint. A third objective is to

maximize an effectiveness/cost ratio. These objectives are discussed at

length in an appendix. The choice of an objective does not change the op-

timization procedure. The example presented below is to minimize cost sub-

ject to effectiveness and system con8traints.

Let q(i,k) = a(i,k) — a(i)m(I,k) be excess experience upon entry to

rank i . The system constraints are

(8) (1) ~ n(i,k)g(k) > r(i) , at least r(i) people in rank ±
k

i = 1,2, ..., N

(ii) ~ q(i,k) g (k) ~~ 0 , the average length of service upon entry to
k

class i at least a(i) for I 2, .. . ,  N

(iii) ~ d(v ,k)g(k) > d , a minimum size of the professional staff.
k

(iv) ~ e(k)g(k) ~ e a minimum level of effectiveness.
k

(v) ~ n(k)g(k) = r ; fixed total strength.
k

(vi) ~ c(k)g(k) the cost.
k

The linear program is to minimize (8:vi) subject to the constraints (8 :i—v) .

This linear program has 2(1 + N) constraints and a nonnegative variable,

g(k) for each career. The next section describes a method for solving this

problem.

Equation (8) describes several examples of constraints. There are other j
possibilities: three additional examples are presented below. The first is
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+ l,k) — a(i + l , i)m(i,k)}g(k) > 0
k

The fraction of those who reach rank I + 1 given they have reached rank I

exceeds a(i + 1,~) . A second example is

+ l,k) — ô(i + l, i)n(i ,k) }g(k) > 3
k

The fraction of those in rank i that are promoted to rank I + 1 per

year is at least 6(i + 1,i) . Finally,

~{d(h,k) — ~d(2.,k)} > 0
• k

T}i~’ frac~Ion of those with length of service greater than k who remain to

have length of service greater than h > 9~ is at least ~
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IV. SOLUTION PROCEDURE

The solution procedure is outlined in this section. It is a column

generation algorithm: see (1), [2), and [3) for the origins and applica-

tions of this idea. Column generation is a variant of the revised simplex

method. The columns of the activity matrix are not stored explicitly.

They are generated by solving a sub—problem.

The section describes one iteration of the procedure . Assume a feasible

basis K is available. Let k index the career in the bases. There are

simplex multipliers associated with this basis; each multiplier is associated

with a constraint.

• (9) (1) ‘1’(i) — stock constraints I = 1. ...,  N

(ii) X(i) — average length of service constraints i = 2, ..., n

(iii) p professional staff constraint.

(iv) y effectiveness constraint.

(v) n — total size constraint.

These simplex multipliers satisf y the following linear equality for careers

• k in the current bases .

(10) ~ ‘V(i)n(i,k) + ~ A (i){q(i,k)} + d(v ,k) + ye(k) + ctn(k) + c(k) = 0 *

I i>2

The current basis is optima l if (~ ,A ,p,y) are nonpositive and for all careers k

(11) ~ ‘V(i)n(i,k) + ~ X( i)q(i k) + d(v,k) + ye(k) + cmn(k) + c(k) > 0
i 1>2a

This condition can be checked by solving the sub—problem

(12) Mm [c(k) + ~ ‘Y(i)n(i,k) + ~ A (i)q(I,k) + d(v,k) + ye (k) + czn (k)
k L  I i~2 

- -..--.* - - ~~~~~~~~ -• -

- ---- ---- - • • -—*-— - - -----• •------- --- -- - •------ — -- - --- 
~
--- -
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From (10) note that the optimal value of the subproblem (12) is less

than or equal to zero . If the optimal value of the subproblem is zero, then

(11) is satisfied and the current basis is optimal. If the optimal value of

the subproblem is negative, then a new career can be found that is eligible

to enter the current basis. The procedure for solving (12) and generating

the new career is presented below.

Substitute the Equations (5),  from Section 2, into (12) and combine

terms. This yields

(13) Mm ~ l(i,u,J)f
k(i,u,j)]

The correct values of l(i,u,j) are given below where d(u) — 1 if u > v

otherwise.

(14) (1) R (i,u,i) c(i,u) + ‘V(i) + ud(u) + ye(i,u) + u

(ii) L (I,u,0) = £(I,u,i) + r(i,u)

(iii) 2.(i,u,i + 1) = t (i ,u ,i) + p(i ,u) + A(i + l)(u — a, i + 1)

for i < N — 1 .

Problem (13) is a shortest path problem. The network was described

in Figure 1, Section 1. The 1(i,u,j) are the lengths. Let V(i,u) —

length of the shortest path starting from node (i,u) out of the system.

• v(i,M) — 9~(i,M,o)

For u < M

R.(i,u,0)

(15) (i) v(i,u) — l’fin i(i,u,i) + v(i,u + 1) if I < N

• 

- 

. £(i,u,i + 1) + v(i + l,u + 1) .

R (N,u,0)
• (ii) v(N,u) — Mm

L (N,u,N) + v(N,u + 1)

IA

~

-- -
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* 
*Finally v — Mm [v(i ,l)) is the length of the shortest path. If v < 0

I
the shortest path defines a career that is eligible to enter the bases. If
*v = 0 , the current solution is optimal. 

-~~~~-~~~~~~~~~~~~~~~ - - -~~~~~~~~ 
• - - --- - --
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V. BOUNDS ON THE OBJECTIVE

The column generation scheme described in Section IV can be modified

slightly to give a series of upper and lower bounds on the optimal value

of the objective. Once a feasible solution has been obtained the cost of

the current feasible solution is an upper bound on the optimal value. Let

U be this upper bound.

N
(16) U — — ~ ~(i)r(I) + up + ye + or

1=1

Recall that the shortest path calculation solves the problem

(17) Mm [c(k) + ~ ~(i)n(i,k) + ~ A(i)q(i,k) + up(k) + ye(k) + cmn(k)1
k L  1 1>2 J

Without loss of generality, q~ , X , , y are nonpositive. If they were

positive a slack variable would have been admitted to the basis. Let

— (qi,A ,p,y,cz) , and call the minimand in (17), x(k,~ ) . The lower

bound is developed by studying a fractional program (18). Notice that

(18) Mm [xk ~+]

the fractional optimization problem (18), will have an optimal value of the

same sign as (17). Let g*(k) be the number of people following career k

in an optimal solution of the overall problem and let V be the optimal

value of the overall problem.

(19) V — ~ c(k)g*(k) ~ U
k

4
• 

- 
-T::: ~~~~=::::~:-~~—--

~i1::-— - —~~~~~~~~ ..A
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Now define z(k) (n(k)g *(k)}/r ; z is a nonnegative vector that sums

to one. Suppose career h solves (18), with value W , then for all k

(20) — 
x(h ,cp) 

., 
x(k ,q)

- 

n(h) = n(k)

Multiply (20) by z(k) and sum; this yields

w <~~~~ c (k)g *(k) + ~ n(i ,k)g~~(k) + 
i~ 2 ~~~ ~ q(i ,k)g *(h) +

(21)

p ~ p (k) g*(k) + y ~ e(k)g *(k) + 0 ~ n(k)g*(n)l
k k k J

*From the feasibility of g and the nonpositivity of (mp ,A ,p,y) , this

becomes

(22) W < ![V _ U] or U + r W < V .

If c is a desired percentage error in the calculation of V , then the

stopping rule is to terminate if

I- r w\(23)

Notice that calculation of this lower bound involves the 8olution of

(18) rather than (17). However, (17) is a rather easy to solve shortest

path problem and (18) is a more difficult to solve fractional program. It

is possible to approximate the value of W using (17). Let Y(k,$,w)

and L(w) be defined as

Y(k ,~ ,w) — x(k ,+)  
- wn(k)

(24) L(w) — Mm (Y(k,~ ,w)]
k
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Notice that evaluating L(u) is equivalent to solving problem (17) with

ci replaced by (ci — w) . The optimal solution of (18) is found by finding

* * *the A that satisfies L(w ) = 0 , in fact  w = W . The reader can show

that L(u) is a decreasing, piecewise linear, concave function of u •

Furthermore, suppose h is the career that solves (17). If there Is no

unique optimal career, then h is selected to minimize n(h) among all

shortest paths. Problem (17) evaluates L(0) , and the left derivative of

L at u — 0 , see (3], is —n(h) . Therefore L(0)/n(h) is an upper

bound for . Def ine w2 by u2 
= —~U/r ; notice froin (23) and the mono—

tonicity of L that cutoff occurs if and only if w

The three possible cases that can occur are shown in Figure 3. First,

in 3.a , 
-
~~ ~~~~. 

< and no cutoff is possible. If < , then L( w2)

is evaluated by solving (17) with ci replaced by a — . In Figure 3b.,

L(u2) < 0 , therefore ~ < u2 and cutoff does not occur. In Figure 3c.

L(w2) > 0 , so ~ and calculations are terminated

error less than c •



— —- -• — -~~~~~ -••— -V--,-- - —-• • —-- -~~~~-—--- —--~~-- • - —----- ~~~~~~~~~~~~~ —--— -. - 
— .

17

0

(‘4 

•~~~ -~~~--~~~~---- ~~~~~ -~~~~~~~~~~~~ -~~~~~~~~—- 
_ _ i_~~~~~~~~



- — ----- —- - . —~~~~-
---,--

~~~~-—---.-- — - - - • —-- -- ---— • - - -  —,- ~~—.-- •--~- ----- -~~--- --- ~~~~- - - -~~~~--~~---—--- •-• • •• ~~~~•

18

)

I- ’ 0 f

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

.-
~

4 0
•1-4

/ 4.’



— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~_ _ _ - —.~.-*—,—- - - • • •• • - — , ~~- • - -—-~~.-.— - - • -.—- --—-----=----

~~

-.-—-— • -- - •-

19

(‘4

0

/1
,1
, 1  0

/ I
4.’/ I/ I S

.—I ’ II
I SI

0

I

- 



— —

20

REFERENCES

[1] Dantz ig ,  C. B . ,  and P. Wolfe , “The Decomposition Principle for  Linear
Programming, ” Operations Research, Vol. 8, pp. 101—111, (1960).

[2] Ford, L. D. and R. Fulkerson , “Computation of Maximal Multi—Commodity
Network Flows,” Management Science, Vol. 5, No. 1, pp. 97—101,
(October 1958) .

[3] Gilmore , t .  C. and R. E. Gomory, “A Linear Programming Approach to thu
Cutting Stock Problem ,” Operations Research, Vol. 9, pp. 849—59,
(1961).

(4] Grinold, R. C. and R. E. Stanford , “Optimal Control of a Graded Man-
power System,” Management Science, Vol. 20 , No. 8, (April 1974).

[5] Gr inold , R. C., “Optimal Input Policies for a Longitudinal Manpower
Flow Model ,” Managemen t Science, Vol. 22 , No. 5, (January 1976).

(6] Grinold, R. C., “Lagrangian Subgradients,” Management Science, Vol. 17,
No. 3, (November 1970).

[7] Oliver, R. N. and D.S.P. Hopkins, “Instructional Costs of University
Outputs,” to appear in the Proceedings of the NBER Conference on
Education as an Industry, Chicago, 1971, NBER, 1976.

[8) Schmidt, J. R. and R. K. Hovey, “Utility Theory and Optimization in
Mi.itary Personnel Management,” Report TR—3—138, B.K. Dynamics
Ccrp., Rockville, Nd., (1975).

[9] Schmidt, J. R., et al., “Development of Utility Measures for Manpower
Planning,” Report TR—3—177, B.K. Dynamics, Rockville, Md.., (1973).

i t
S 

• 
-

~~~~~~~~~~~~~ ---~~~~~~~
- - - -

~~
—---- -

~~~~~ 
-- ---

~~~ ~~~
- - --


